Massively Parallel Mesoscopic Simulations of Gas Permeability of Thin Films Composed of Carbon Nanotubes

نویسندگان

  • Alexey N. Volkov
  • Leonid V. Zhigilei
چکیده

A mesoscopic computational model for simulation of gas flow through carbon nanotube (CNT) films is developed. The model is implemented in a parallel computational code enabling massively parallel dynamic simulations of CNT materials at length scales relevant to experimental studies. Self-diffusivity of Ar within CNT films with 9% volume fraction of the nanotubes and the effective diffusivity of Ar through the films are calculated for two different structures of the films: a continuous network of CNT bundles and a layered arrangement of dispersed individual CNTs. The results of the simulations suggest a moderate structural sensitivity of the gas diffusivity, with about 3–4.5 times lower values of self-diffusivity predicted for films with dispersed CNTs, and a smaller difference in the values of the effective diffusivity that are found to be on the order of 10−6 m2s−1 for both film structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

Electrical and electromagnetic properties of isolated carbon nanotubes and carbon nanotube-based composites

Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinf...

متن کامل

Visible light photocatalytic activity of MWCNT/TiO2 using the degradation of methylene blue

Multi-walled carbon nanotubes (MWCNT)-doped TiO2 thin films were synthesized by the dip-coating method. The obtained products were characterized by SEM, EDX, XRD, and UV-vis absorption spectroscopy. The XRD patterns showed the presence of anatase phase. Absorption spectrum of MWCNT-doped TiO2 revealed a red shift in the optical absorption edge due to carbon doping. The photocatalytic properties...

متن کامل

Evaluation of the Effect of Ni-Co NPs for the Effective Growth of Carbon Nanotubes by TCVD System

A systematic study was conducted to understand the influences of catalyst combination as Ni-Co NPs on carbon nanotubes (CNTs) grown by Chemical Vapor Deposition (TCVD). The DC-sputtering system was used to prepare Co and Ni-Co thin films on silicon substrate. Ni- Co nanoparticles were used as metal catalyst for growing carbon nanotubes from acetylene (C2H2) gas in 850 ̊ C during 15 min. Carb...

متن کامل

Comparative Study of Nanostructured Zr-Fe2O3 and CNT Modified Zr-Fe2O3 Thin Films for Photo Electrochemical Generation of Hydrogen

Nanostructured hematite thin films are doped with zirconium successfully and also modified by introducing CNT using sol-gel method for their implementation as photo-electrode in photo-electrochemical (PEC) cell for hydrogen generation. XRD, UV-visible spectroscopy and PEC study techniques are used to characterize the thin films. The PEC responses of thin films are improved by introducing carbon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011